Une équipe de l’Université d’Ottawa fait progresser le domaine de la vue grâce à une intervention potentiellement révolutionnaire
Une étude révèle que l’exposition de matériaux biomimétiques à une lumière bleue de faible intensité permet de réparer les cornées abimées, ce qui pourrait changer la vie de millions de personnes.
Une équipe de recherche de l’Université d’Ottawa et ses partenaires ont révélé que l’activation d’un biomatériau injectable par des impulsions de lumière bleue de faible intensité a l’immense potentiel de réparer immédiatement la couche externe de l’œil.
Fondés sur la conception biomimétique, une innovation inspirée de la nature, les résultats probants de l’équipe multidisciplinaire démontrent que l’activation d’un matériau novateur par la lumière permet de restructurer et d’épaissir le tissu cornéen endommagé, en plus d’en favoriser la guérison.
Cette technologie pourrait transformer le domaine de la réparation cornéenne; des dizaines de millions de personnes souffrent de maladies de la cornée et peu d’entre elles sont admissibles à une greffe. À l’heure actuelle, la greffe constitue le traitement de référence des troubles qui provoquent un amincissement de la cornée, comme le kératocône, une maladie oculaire mal connue entrainant une perte de la vue chez de nombreuses personnes.
« Notre technologie représente une grande avancée dans le domaine de la réparation cornéenne. Nous croyons que cette solution pratique permettra de traiter les personnes atteintes de troubles qui perturbent la forme et la géométrie de la cornée, dont le kératocône », soutient Dr Emilio Alarcon, professeur agrégé à la Faculté de médecine de l’Université d’Ottawa et chercheur du Groupe de recherche de solutions thérapeutiques et de bio-ingénierie (BEaTS) à l’Institut de cardiologie de l’Université d’Ottawa.
La cornée est la surface protectrice bombée de l’œil, située devant l’iris et la pupille. Elle contrôle et dirige les rayons lumineux à l’intérieur de l’œil, en plus de contribuer à une vision claire. En temps normal, elle est transparente. Or, toute blessure ou infection peut l’abimer.
Les travaux de l’équipe ont été publiés (en anglais seulement) dans la revue scientifique réputée Advanced Functional Materials.
Les biomatériaux conçus et mis à l’essai par l’équipe se composent de peptides courts et de polymères naturels appelés glycosaminoglycanes. Sous forme de liquide visqueux, ce composé est injecté dans une minuscule pochette d’origine chirurgicale, fixée au tissu cornéen. Exposé à une lumière bleue de faible intensité, l’hydrogel à base de peptides se solidifie et forme une structure tridimensionnelle d’apparence tissulaire en quelques minutes. Selon le Dr Alarcon, ce matériau transparent présente alors des propriétés similaires à celles observées sur des cornées de porc.
Des expériences in vivo sur un modèle de rat ont indiqué que l’hydrogel activé par la lumière pourrait épaissir la cornée sans provoquer d’effet indésirable. L’équipe de recherche, qui a préconisé un bien plus faible niveau d’exposition à la lumière bleue que lors d’autres études, a aussi testé la technologie avec succès sur un modèle ex vivo de cornée de porc. Avant de procéder aux essais cliniques sur des humains, il faudra par contre effectuer des essais sur des modèles de grands animaux.
« Notre matériau est conçu pour recueillir l’énergie de la lumière bleue afin de déclencher la transformation immédiate du matériau en structure apparentée à la cornée. Nos données cumulatives indiquent que le matériau n’est pas toxique et se maintient pendant plusieurs semaines sur un modèle animal. Nous prévoyons qu’il demeurera stable sur une cornée humaine sans être toxique », affirme le Dr Alarcon, dont le laboratoire à l’Université d’Ottawa se concentre sur l’élaboration de nouveaux matériaux aux propriétés régénératrices pour les tissus du cœur, de la peau et de la cornée.
Plus de sept ans séparent le début de ces recherches rigoureuses de leur publication.
« Nous avons dû concevoir chaque élément des composantes de la technologie, de la source lumineuse aux molécules utilisées dans l’étude. Nous avons créé cette technologie de sorte à la rendre cliniquement applicable, autrement dit, pour que ses composantes soient produites selon des normes strictes de stérilité », assure le chercheur.
Les résultats de ces travaux font aussi l’objet d’une demande de brevet, dont la licence est en cours de négociation.
Le Dr Alarcon est l’auteur principal de l’étude. Il en a dirigé le volet de conception matérielle, alors que le Dr Marcelo Muñoz et Aidan MacAdam, de l’Université d’Ottawa, ont joué un grand rôle dans la création de la nouvelle technologie. Parmi leurs partenaires interdisciplinaires comptent la Dre May Griffith, chercheuse spécialisée en régénération de la cornée à l’Université de Montréal, ainsi que la Dre Isabelle Brunette, spécialiste en ophtalmologie et en transplantation cornéenne.
Ce projet a obtenu le soutien financier du Programme de projets de recherche concertée sur la santé, du Programme de subventions à la découverte du Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), du gouvernement de l’Ontario et de l’Institut de cardiologie de l’Université d’Ottawa.
L’article intitule Low Energy Blue Pulsed Light-Activated Injectable Materials for Restoring Thinning Corneas a été publié dans Advanced Functional Materials le 19 juillet 2023.
Cet article a été adapté et publié avec l’autorisation de l’Université d’Ottawa.
Récit suivant
Démystifier le travail du personnel de recherche
Épauler les chercheurs et chercheuses, encadrer les étudiants et étudiantes, organiser le travail au quotidien, gérer les budgets : le personnel de recherche a des compétences variées et touche à tout dans un laboratoire.